Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Induction of mitochondrial reactive oxygen species production by GSH mediated S-glutathionylation of 2-oxoglutarate dehydrogenase.

Identifieur interne : 000448 ( Main/Exploration ); précédent : 000447; suivant : 000449

Induction of mitochondrial reactive oxygen species production by GSH mediated S-glutathionylation of 2-oxoglutarate dehydrogenase.

Auteurs : Ryan J. Mailloux [Canada] ; D. Craig Ayre [Canada] ; Sherri L. Christian [Canada]

Source :

RBID : pubmed:26928132

Descripteurs français

English descriptors

Abstract

2-Oxoglutarate dehydrogenase (Ogdh) is an important mitochondria redox sensor that can undergo S-glutathionylation following an increase in H2O2 levels. Although S-glutathionylation is required to protect Ogdh from irreversible oxidation while simultaneously modulating its activity it remains unknown if glutathione can also modulate reactive oxygen species (ROS) production by the complex. We report that reduced (GSH) and oxidized (GSSG) glutathione control O2(∙-)/H2O2 formation by Ogdh through protein S-glutathionylation reactions. GSSG (1mM) induced a modest decrease in Ogdh activity which was associated with a significant decrease in O2(∙-)/H2O2 formation. GSH had the opposite effect, amplifying O2(∙-)/H2O2 formation by Ogdh. Incubation of purified Ogdh in 2.5mM GSH led to significant increase in O2(∙-)/H2O2 formation which also lowered NADH production. Inclusion of enzymatically active glutaredoxin-2 (Grx2) in reaction mixtures reversed the GSH-mediated amplification of O2(∙-)/H2O2 formation. Similarly pre-incubation of permeabilized liver mitochondria from mouse depleted of GSH showed an approximately ~3.5-fold increase in Ogdh-mediated O2(∙-)/H2O2 production that was matched by a significant decrease in NADH formation which could be reversed by Grx2. Taken together, our results demonstrate GSH and GSSG modulate ROS production by Ogdh through S-glutathionylation of different subunits. This is also the first demonstration that GSH can work in the opposite direction in mitochondria-amplifying ROS formation instead of quenching it. We propose that this regulatory mechanism is required to modulate ROS emission from Ogdh in response to variations in glutathione redox buffering capacity.

DOI: 10.1016/j.redox.2016.02.002
PubMed: 26928132
PubMed Central: PMC4776629


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Induction of mitochondrial reactive oxygen species production by GSH mediated S-glutathionylation of 2-oxoglutarate dehydrogenase.</title>
<author>
<name sortKey="Mailloux, Ryan J" sort="Mailloux, Ryan J" uniqKey="Mailloux R" first="Ryan J" last="Mailloux">Ryan J. Mailloux</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada. Electronic address: rjmailloux@mun.ca.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland</wicri:regionArea>
<wicri:noRegion>Newfoundland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Craig Ayre, D" sort="Craig Ayre, D" uniqKey="Craig Ayre D" first="D" last="Craig Ayre">D. Craig Ayre</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland</wicri:regionArea>
<wicri:noRegion>Newfoundland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Christian, Sherri L" sort="Christian, Sherri L" uniqKey="Christian S" first="Sherri L" last="Christian">Sherri L. Christian</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland</wicri:regionArea>
<wicri:noRegion>Newfoundland</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26928132</idno>
<idno type="pmid">26928132</idno>
<idno type="doi">10.1016/j.redox.2016.02.002</idno>
<idno type="pmc">PMC4776629</idno>
<idno type="wicri:Area/Main/Corpus">000456</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000456</idno>
<idno type="wicri:Area/Main/Curation">000456</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000456</idno>
<idno type="wicri:Area/Main/Exploration">000456</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Induction of mitochondrial reactive oxygen species production by GSH mediated S-glutathionylation of 2-oxoglutarate dehydrogenase.</title>
<author>
<name sortKey="Mailloux, Ryan J" sort="Mailloux, Ryan J" uniqKey="Mailloux R" first="Ryan J" last="Mailloux">Ryan J. Mailloux</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada. Electronic address: rjmailloux@mun.ca.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland</wicri:regionArea>
<wicri:noRegion>Newfoundland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Craig Ayre, D" sort="Craig Ayre, D" uniqKey="Craig Ayre D" first="D" last="Craig Ayre">D. Craig Ayre</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland</wicri:regionArea>
<wicri:noRegion>Newfoundland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Christian, Sherri L" sort="Christian, Sherri L" uniqKey="Christian S" first="Sherri L" last="Christian">Sherri L. Christian</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland</wicri:regionArea>
<wicri:noRegion>Newfoundland</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Redox biology</title>
<idno type="eISSN">2213-2317</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (metabolism)</term>
<term>Glutathione Disulfide (metabolism)</term>
<term>Hydrogen Peroxide (metabolism)</term>
<term>Ketoglutarate Dehydrogenase Complex (metabolism)</term>
<term>Mice (MeSH)</term>
<term>Mitochondria, Liver (metabolism)</term>
<term>NAD (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Reactive Oxygen Species (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Disulfure de glutathion (métabolisme)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Ketoglutarate dehydrogenase complex (métabolisme)</term>
<term>Mitochondries du foie (métabolisme)</term>
<term>NAD (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Peroxyde d'hydrogène (métabolisme)</term>
<term>Souris (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Glutathione Disulfide</term>
<term>Hydrogen Peroxide</term>
<term>Ketoglutarate Dehydrogenase Complex</term>
<term>NAD</term>
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mitochondria, Liver</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Disulfure de glutathion</term>
<term>Espèces réactives de l'oxygène</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Ketoglutarate dehydrogenase complex</term>
<term>Mitochondries du foie</term>
<term>NAD</term>
<term>Peroxyde d'hydrogène</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Mice</term>
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Oxydoréduction</term>
<term>Souris</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">2-Oxoglutarate dehydrogenase (Ogdh) is an important mitochondria redox sensor that can undergo S-glutathionylation following an increase in H2O2 levels. Although S-glutathionylation is required to protect Ogdh from irreversible oxidation while simultaneously modulating its activity it remains unknown if glutathione can also modulate reactive oxygen species (ROS) production by the complex. We report that reduced (GSH) and oxidized (GSSG) glutathione control O2(∙-)/H2O2 formation by Ogdh through protein S-glutathionylation reactions. GSSG (1mM) induced a modest decrease in Ogdh activity which was associated with a significant decrease in O2(∙-)/H2O2 formation. GSH had the opposite effect, amplifying O2(∙-)/H2O2 formation by Ogdh. Incubation of purified Ogdh in 2.5mM GSH led to significant increase in O2(∙-)/H2O2 formation which also lowered NADH production. Inclusion of enzymatically active glutaredoxin-2 (Grx2) in reaction mixtures reversed the GSH-mediated amplification of O2(∙-)/H2O2 formation. Similarly pre-incubation of permeabilized liver mitochondria from mouse depleted of GSH showed an approximately ~3.5-fold increase in Ogdh-mediated O2(∙-)/H2O2 production that was matched by a significant decrease in NADH formation which could be reversed by Grx2. Taken together, our results demonstrate GSH and GSSG modulate ROS production by Ogdh through S-glutathionylation of different subunits. This is also the first demonstration that GSH can work in the opposite direction in mitochondria-amplifying ROS formation instead of quenching it. We propose that this regulatory mechanism is required to modulate ROS emission from Ogdh in response to variations in glutathione redox buffering capacity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26928132</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>11</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2213-2317</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<PubDate>
<Year>2016</Year>
<Month>08</Month>
</PubDate>
</JournalIssue>
<Title>Redox biology</Title>
<ISOAbbreviation>Redox Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Induction of mitochondrial reactive oxygen species production by GSH mediated S-glutathionylation of 2-oxoglutarate dehydrogenase.</ArticleTitle>
<Pagination>
<MedlinePgn>285-97</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.redox.2016.02.002</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S2213-2317(16)30013-1</ELocationID>
<Abstract>
<AbstractText>2-Oxoglutarate dehydrogenase (Ogdh) is an important mitochondria redox sensor that can undergo S-glutathionylation following an increase in H2O2 levels. Although S-glutathionylation is required to protect Ogdh from irreversible oxidation while simultaneously modulating its activity it remains unknown if glutathione can also modulate reactive oxygen species (ROS) production by the complex. We report that reduced (GSH) and oxidized (GSSG) glutathione control O2(∙-)/H2O2 formation by Ogdh through protein S-glutathionylation reactions. GSSG (1mM) induced a modest decrease in Ogdh activity which was associated with a significant decrease in O2(∙-)/H2O2 formation. GSH had the opposite effect, amplifying O2(∙-)/H2O2 formation by Ogdh. Incubation of purified Ogdh in 2.5mM GSH led to significant increase in O2(∙-)/H2O2 formation which also lowered NADH production. Inclusion of enzymatically active glutaredoxin-2 (Grx2) in reaction mixtures reversed the GSH-mediated amplification of O2(∙-)/H2O2 formation. Similarly pre-incubation of permeabilized liver mitochondria from mouse depleted of GSH showed an approximately ~3.5-fold increase in Ogdh-mediated O2(∙-)/H2O2 production that was matched by a significant decrease in NADH formation which could be reversed by Grx2. Taken together, our results demonstrate GSH and GSSG modulate ROS production by Ogdh through S-glutathionylation of different subunits. This is also the first demonstration that GSH can work in the opposite direction in mitochondria-amplifying ROS formation instead of quenching it. We propose that this regulatory mechanism is required to modulate ROS emission from Ogdh in response to variations in glutathione redox buffering capacity.</AbstractText>
<CopyrightInformation>Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mailloux</LastName>
<ForeName>Ryan J</ForeName>
<Initials>RJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada. Electronic address: rjmailloux@mun.ca.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Craig Ayre</LastName>
<ForeName>D</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Christian</LastName>
<ForeName>Sherri L</ForeName>
<Initials>SL</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>02</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Redox Biol</MedlineTA>
<NlmUniqueID>101605639</NlmUniqueID>
<ISSNLinking>2213-2317</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516009">Glrx2 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0U46U6E8UK</RegistryNumber>
<NameOfSubstance UI="D009243">NAD</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.2.4.2</RegistryNumber>
<NameOfSubstance UI="D007655">Ketoglutarate Dehydrogenase Complex</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>ULW86O013H</RegistryNumber>
<NameOfSubstance UI="D019803">Glutathione Disulfide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019803" MajorTopicYN="N">Glutathione Disulfide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007655" MajorTopicYN="N">Ketoglutarate Dehydrogenase Complex</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008930" MajorTopicYN="N">Mitochondria, Liver</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009243" MajorTopicYN="N">NAD</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">2-Oxoglutarate dehydrogenase</Keyword>
<Keyword MajorTopicYN="Y">Glutaredoxin-2</Keyword>
<Keyword MajorTopicYN="Y">Glutathione</Keyword>
<Keyword MajorTopicYN="Y">Krebs cycle</Keyword>
<Keyword MajorTopicYN="Y">Reactive oxygen species</Keyword>
<Keyword MajorTopicYN="Y">Redox signaling</Keyword>
<Keyword MajorTopicYN="Y">S-glutathionylation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>01</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>02</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>02</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>3</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>3</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>11</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26928132</ArticleId>
<ArticleId IdType="pii">S2213-2317(16)30013-1</ArticleId>
<ArticleId IdType="doi">10.1016/j.redox.2016.02.002</ArticleId>
<ArticleId IdType="pmc">PMC4776629</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Feb;1822(2):212-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22200491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2012 Aug 15;53(4):962-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22634394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2015 Jul 1;469(1):25-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25891661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 12;279(46):47939-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15347644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 May 30;278(22):19603-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12649289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2015 Apr;33:8-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25305438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2015;4:381-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25744690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Apr;1782(4):229-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18206986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20532-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22139372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2014 Jun;71:196-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24681256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Opin Drug Metab Toxicol. 2011 Jul;7(7):891-910</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21557709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res. 2011 Jan;45(1):29-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21110783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2013 Aug;61:161-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23567190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Oct 24;289(43):29859-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25210035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2005 Dec 29;360(1464):2335-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16321804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8168-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Pharmacol. 2007 Aug;7(4):381-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17662654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2014 May 6;19(5):757-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24561260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Mar 21;289(12):8312-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24515115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Dec 26;289(52):36125-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25362663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharmacol Exp Ther. 2015 Nov;355(2):137-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26311813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Dec 23;468(7327):1115-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21179168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2004 Sep 8;24(36):7771-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15356188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 May 23;289(21):14812-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24727547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Mar 15;16(6):476-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21954972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Mar 22;288(12):8365-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23335511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2014;2:123-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24455476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2015 May;396(5):465-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25720067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2004 Nov 1;431(1):138-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15464736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2016 Feb 9;23(2):254-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26777689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2008 Mar 15;44(6):921-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18155672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2003 Apr 15;42(14):4235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12680778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2014;2:673-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24944912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2013 Dec;65:1201-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24056031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Sep 5;283(36):24801-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18611857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 May;11(5):1059-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19119916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2007 Aug 3;359(3):759-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17559804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2016 Aug;8:110-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26773874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2009 Feb;34(2):85-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19135374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2015 Dec;89:642-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26456061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Feb;1793(2):427-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19038292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2015 Sep 20;23(9):734-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25891126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2001 Jun 1;30(11):1191-212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11368918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2016 Feb;91:247-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26708453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20057-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24277839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2015 Feb;79:56-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25445401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Jan 8;47(1):473-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18081316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Dev Biol. 2014 Nov 17;2:68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25453035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2009 Jan 1;417(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19061483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2015 Aug 20;59(4):651-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26236015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2002 Oct;269(20):5004-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12383259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2015 Apr 15;467(2):271-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25643703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 23;276(12):9038-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11124957</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Mailloux, Ryan J" sort="Mailloux, Ryan J" uniqKey="Mailloux R" first="Ryan J" last="Mailloux">Ryan J. Mailloux</name>
</noRegion>
<name sortKey="Christian, Sherri L" sort="Christian, Sherri L" uniqKey="Christian S" first="Sherri L" last="Christian">Sherri L. Christian</name>
<name sortKey="Craig Ayre, D" sort="Craig Ayre, D" uniqKey="Craig Ayre D" first="D" last="Craig Ayre">D. Craig Ayre</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000448 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000448 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26928132
   |texte=   Induction of mitochondrial reactive oxygen species production by GSH mediated S-glutathionylation of 2-oxoglutarate dehydrogenase.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26928132" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020